Go to content messages.homepage.accessibility

Analysis of the function graph

1. Original procedure of the algorithm

2. Proposals of adaptation

3. Demonstration of the procedure by a blind student

Example

The example is available in following formats:

  1. this HTML page
  2. file in Lambda: analysis_en.lambda
  3. file in MS Word: analysis_en.doc

Analyse the function f(x) =\frac{xí3š}{xí2š -1} .

Solution
1. Domain of the function

xí2š -1 \neq 0
xí2š \neq 1
x \neq \pm 1

Dáfš =(-\infty, -1) ¨) (-1, 1) ¨) (1, \infty)
-1 and 1 are the points of discontinuity.

2. Even or odd function

f(-x) =\frac{(-x)í3š}{(-x)í2š -1} =-\frac{xí3š}{xí2š -1} =-f(x)

The function is odd.

3. Graph of the function below or above the axis x

Solving the equation f(x) =0:

$ \frac{xí3š}{xí2š -1} =0 ó"o x =0$
x \in (-\infty, -1)$: $ -
x \in (-1, 0)$: $ +
x \in (0, 1)$: $ -
x \in (1, \infty)$: $ -

4. Stationary points

Solving the equation f'(x) =0:

f'(x) =\frac{3xí2š *(xí2š -1) -xí3š *2x}{(xí2š -1)í2š}
=\frac{xí4š -3xí2š}{(xí2š -1)í2š}
=\frac{xí2š *(xí2š -3)}{(xí2š -1)í2š}

x =0
xí2š -3 =0
xí2š =3
x =\pm \sqrt{3}

x \in (-\infty, -\sqrt{3})$: +, $ \uparrow
x \in (-\sqrt{3}, 0)$: -, $ \downarrow
x \in (0, \sqrt{3})$: -, $ \downarrow
x \in (-\infty, -\sqrt{3})$: +, $ \uparrow

The local maximum: [-\sqrt{3}, \frac{-3 \sqrt{3}}{2}]
The local minimum: [\sqrt{3}, \frac{3 \sqrt{3}}{2}]$

5. Inflection points

Solving the equation f''(x) =0:

f''(x) =\frac{(4xí3š -6x) *(xí2š -1)í2š -(xí4š -3xí2š) *2(xí2š -1) *2x}{(xí2š -1)í4š}
=\frac{2x *(xí2š -1) *[(2xí2š -3) *(xí2š -1) -2(xí4š -3xí2š)]}{(xí2š -1)í4š}
=\frac{2x *[(2xí2š -3) *(xí2š -1) -2(xí4š -3xí2š)]}{(xí2š -1)í3š}
=\frac{2x *[2xí4š -3xí2š -2xí2š +3 -2xí4š +6xí2š]}{(xí2š -1)í3š}
=\frac{2x *[xí2š +3]}{(xí2š -1)í3š}

2x =0 "o x =0
xí2š +3 \neq0

x \in (-\infty, -1): -, A
x \in (-1, 0): +, V
x \in (0, 1): -, A
x \in (1, \infty): +, V

The inflection point is [0, 0].

6. Asymptotes

Oblique asymptote y =kx +q:

k =\limáx :o \pm \inftyš \frac{f(x)}{x}
=\limáx :o \pm \inftyš \frac{xí3š}{xí2š -1} :x
=\limáx :o \pm \inftyš \frac{xí3š}{x *(xí2š -1)}
=\limáx :o \pm \inftyš \frac{xí2š}{xí2š -1}
=1

q =\limáx :o \pm \inftyš(f(x) -kx)
=\limáx :o \pm \inftyš(\frac{xí3š}{xí2š -1} -x)
=\limáx :o \pm \inftyš(\frac{xí3š -x(xí2š -1)}{xí2š -1})
=\limáx :o \pm \inftyš \frac{x}{xí2š -1}
=0

So the oblique asymptote is y =x.

Vertical asymptotes:

  • \limáx :o -1í š-š \frac{xí3š}{xí2š -1} =\limáx :o -1í š-š \frac{xí3š}{x +1} *\frac{1}{x -1} =-\infty
  • \limáx :o -1í š+š \frac{xí3š}{xí2š -1} =\limáx :o -1í š+š \frac{xí3š}{x +1} *\frac{1}{x -1} =\infty
  • \limáx :o 1í š-š \frac{xí3š}{xí2š -1} =\limáx :o 1í š-š \frac{xí3š}{x +1} *\frac{1}{x -1} =-\infty
  • \limáx :o 1í š+š \frac{xí3š}{xí2š -1} =\limáx :o 1í š+š \frac{xí3š}{x +1} *\frac{1}{x -1} =\infty

There are two vertical asymptotes: x =-1 and x =1.

7. Final description of the graph

The function is defined for x \in (-\infty, -1) ¨) (-1, 1) ¨) (1, \infty). The graph is limited by the vertical asymptotes x =-1 and x =1 and the oblique asymptote y =x. There are two local extrema, local maximum: [-\sqrt{3}, \frac{-3 \sqrt{3}}{2}] and local minimum: [\sqrt{3}, \frac{3 \sqrt{3}}{2}].

The graph of the function is for x \in (-\infty, -1) below the axis x, there is the local maximum [-\sqrt{3}, \frac{-3 \sqrt{3}}{2}], the curve concaves downward, and its position is on the left side of the asymptote x =-1. Because the point [-\sqrt{3}, -\sqrt{3}] lying on the asymptote y =x is above the local maximum [-\sqrt{3}, \frac{-3 \sqrt{3}}{2}], the whole part of the graph is for x \in (-\infty, -1) bellow the asymptote y =x.

The graph of the function on the interval (-1, 1) intersects with the axis x at the point [0, 0] – the inflection point, where the function changes its shape, for x \in (-1, 0) concaves upward, for x \in (0, 1) concaves downward, the function is odd. The part of the graph for x \in (-1, 1) is located between the vertical asymptotes x =-1 and x =1, the oblique asymptote y =x intersects the graph of the function at the point [0, 0].

The graph of the function is for x \in (1, \infty) above the axis x, there is the local minimum [\sqrt{3}, \frac{3 \sqrt{3}}{2}], the curve concaves upward, and its position is on the right side of the asymptote x =1. Because the point [\sqrt{3}, \sqrt{3}] lying on the asymptote y =x is below the local minimum [\sqrt{3}, \frac{3 \sqrt{3}}{2}], the whole part of the graph is for x \in (1, \infty) above the asymptote y =x.

4. Sketching the graph of the function and its adaptation