Go to content messages.homepage.accessibility

Analysis of the function graph

1. Original procedure of the algorithm

2. Proposals of adaptation

3. Demonstration of the procedure by a blind student

Example

The example is available in following formats:

  1. this HTML page
  2. file in Lambda: analysis_en.lambda
  3. file in MS Word: analysis_en.doc

Analyse the function  f(x) =\frac{  x^3 }{  x^2 -1 } .

Solution
1. Domain of the function

x^2 -1 \neq 0
x^2 \neq 1
x \neq\pm 1

D_f =(-\infty, -1) \cup (-1, 1) \cup (1, \infty)
-1 and 1 are the points of discontinuity.

2. Even or odd function

f(-x) =\frac{ (-x)^3}{ (-x)^2 -1}=-\frac{ x^3}{ x^2 -1} =-f(x)

The function is odd.

3. Graph of the function below or above the axis x

Solving the equation f(x) =0:

\frac{ x^3}{ x^2 -1} =0 \Leftrightarrow x =0
x \in (-\infty, -1): -
x \in (-1, 0): +
x \in (0, 1): -
x \in (1, \infty): -

4. Stationary points

Solving the equation f'(x) =0:

f'(x) =\frac{ 3x^2 *(x^2 -1) -x^3 *2x}{ (x^2 -1)^2}
=\frac{ x^4 -3x^2}{ (x^2 -1)^2}
=\frac{ x^2 *(x^2 -3)}{ (x^2 -1)^2}

x =0
x^2 -3 =0
x^2 =3
x =\pm\sqrt{ 3}

x \in (-\infty, -\sqrt{ 3}): +, \uparrow
x \in (-\sqrt{ 3}, 0): -, \downarrow
x \in (0, \sqrt{ 3}): -, \downarrow
x \in (-\infty, -\sqrt{ 3}): +, \uparrow

The local maximum: [-\sqrt{ 3}, \frac{ -3\sqrt{ 3}}{ 2}]
The local minimum: [\sqrt{ 3}, \frac{ 3\sqrt{ 3}}{ 2}]

5. Inflection points

Solving the equation f''(x) =0:

f''(x) =\frac{ (4x^3 -6x) *(x^2 -1)^2 -(x^4 -3x^2) *2(x^2 -1) *2x}{ (x^2 -1)^4}
=\frac{ 2x *(x^2 -1) *[(2x^2 -3) *(x^2 -1) -2(x^4 -3x^2)]}{ (x^2 -1)^4}
=\frac{ 2x *[(2x^2 -3) *(x^2 -1) -2(x^4 -3x^2)]}{ (x^2 -1)^3}
=\frac{ 2x *[2x^4 -3x^2 -2x^2 +3 -2x^4 +6x^2]}{ (x^2 -1)^3}
=\frac{ 2x *[x^2 +3]}{ (x^2 -1)^3}

2x =0 \Rightarrow x =0
x^2 +3\neq0

x \in (-\infty, -1): -, A
x \in (-1, 0): +, V
x \in (0, 1): -, A
x \in (1, \infty): +, V

The inflection point is [0, 0].

6. Asymptotes

Oblique asymptote y =kx +q:

k =\lim_{ x \rightarrow \pm\infty}\frac{ f(x)}{ x}
=\lim_{ x \rightarrow \pm\infty}\frac{ x^3}{ x^2 -1} :x
=\lim_{ x \rightarrow \pm\infty}\frac{ x^3}{ x *(x^2 -1)}
=\lim_{ x \rightarrow \pm\infty}\frac{ x^2}{ x^2 -1}
=1

q =\lim_{ x \rightarrow \pm\infty}(f(x) -kx)
=\lim_{ x \rightarrow \pm\infty}(\frac{ x^3}{ x^2 -1} -x)
=\lim_{ x \rightarrow \pm\infty}(\frac{ x^3 -x(x^2 -1)}{ x^2 -1})
=\lim_{ x \rightarrow \pm\infty}\frac{ x}{ x^2 -1}
=0

So the oblique asymptote is y =x.

Vertical asymptotes:

  • \lim_{ x \rightarrow -1^-}\frac{ x^3}{ x^2 -1}=\lim_{ x \rightarrow -1^-}\frac{ x^3}{ x +1} *\frac{ 1}{ x -1} =-\infty
  • \lim_{ x \rightarrow -1^+}\frac{ x^3}{ x^2 -1}=\lim_{ x \rightarrow -1^+}\frac{ x^3}{ x +1} *\frac{ 1}{ x -1} =\infty
  • \lim_{ x \rightarrow 1^-}\frac{ x^3}{ x^2 -1}=\lim_{ x \rightarrow 1^-}\frac{ x^3}{ x +1} *\frac{ 1}{ x -1} =-\infty
  • \lim_{ x \rightarrow 1^+}\frac{ x^3}{ x^2 -1}=\lim_{ x \rightarrow 1^+}\frac{ x^3}{ x +1} *\frac{ 1}{ x -1} =\infty

There are two vertical asymptotes: x =-1 and x =1.

7. Final description of the graph

The function is defined for   x \in (-\infty, -1) \cup (-1, 1) \cup (1, \infty). The graph is limited by the vertical asymptotes   x =-1 and   x =1 and the oblique asymptote   y =x. There are two local extrema, local maximum:   [-\sqrt{ 3}, \frac{ -3\sqrt{ 3}}{ 2}] and local minimum:   [\sqrt{ 3}, \frac{ 3\sqrt{ 3}}{ 2}].

The graph of the function is for   x \in (-\infty, -1) below the axis   x, there is the local maximum   [-\sqrt{ 3}, \frac{ -3\sqrt{ 3}}{ 2}], the curve concaves downward, and its position is on the left side of the asymptote   x =-1. Because the point   [-\sqrt{ 3}, -\sqrt{ 3}] lying on the asymptote   y =x is above the local maximum   [-\sqrt{ 3}, \frac{ -3\sqrt{ 3}}{ 2}], the whole part of the graph is for   x \in (-\infty, -1) bellow the asymptote   y =x.

The graph of the function on the interval   (-1, 1) intersects with the axis   x at the point   [0, 0] – the inflection point, where the function changes its shape, for   x \in (-1, 0) concaves upward, for   x \in (0, 1) concaves downward, the function is odd. The part of the graph for   x \in (-1, 1) is located between the vertical asymptotes   x =-1 and   x =1, the oblique asymptote   y =x intersects the graph of the function at the point   [0, 0].

The graph of the function is for   x \in (1, \infty) above the axis   x, there is the local minimum   [\sqrt{ 3}, \frac{ 3\sqrt{ 3}}{ 2}], the curve concaves upward, and its position is on the right side of the asymptote   x =1. Because the point   [\sqrt{ 3}, \sqrt{ 3}] lying on the asymptote   y =x is below the local minimum   [\sqrt{ 3}, \frac{ 3\sqrt{ 3}}{ 2}], the whole part of the graph is for   x \in (1, \infty) above the asymptote   y =x.

4. Sketching the graph of the function and its adaptation