Go to content
Link to Teiresias web page

Adaptation of Mathematical ALGorithms

Analysis of the function graph

messages.homepage.accessibility

Analysis of the function graph

1. Original procedure of the algorithm

2. Proposals of adaptation

3. Demonstration of the procedure by a blind student

Example

The example is available in following formats:

  1. this HTML page
  2. file in Lambda: analysis_en.lambda
  3. file in MS Word: analysis_en.doc

Analyse the function  f(x) =\frac{  x^3 }{  x^2 -1 } .

Solution
1. Domain of the function

x^2 -1 \neq 0
x^2 \neq 1
x \neq\pm 1

D_f =(-\infty, -1) \cup (-1, 1) \cup (1, \infty)
-1 and 1 are the points of discontinuity.

2. Even or odd function

f(-x) =\frac{ (-x)^3}{ (-x)^2 -1}=-\frac{ x^3}{ x^2 -1} =-f(x)

The function is odd.

3. Graph of the function below or above the axis x

Solving the equation f(x) =0:

\frac{ x^3}{ x^2 -1} =0 \Leftrightarrow x =0
x \in (-\infty, -1): -
x \in (-1, 0): +
x \in (0, 1): -
x \in (1, \infty): -

4. Stationary points

Solving the equation f'(x) =0:

f'(x) =\frac{ 3x^2 *(x^2 -1) -x^3 *2x}{ (x^2 -1)^2}
=\frac{ x^4 -3x^2}{ (x^2 -1)^2}
=\frac{ x^2 *(x^2 -3)}{ (x^2 -1)^2}

x =0
x^2 -3 =0
x^2 =3
x =\pm\sqrt{ 3}

x \in (-\infty, -\sqrt{ 3}): +, \uparrow
x \in (-\sqrt{ 3}, 0): -, \downarrow
x \in (0, \sqrt{ 3}): -, \downarrow
x \in (-\infty, -\sqrt{ 3}): +, \uparrow

The local maximum: [-\sqrt{ 3}, \frac{ -3\sqrt{ 3}}{ 2}]
The local minimum: [\sqrt{ 3}, \frac{ 3\sqrt{ 3}}{ 2}]

5. Inflection points

Solving the equation f''(x) =0:

f''(x) =\frac{ (4x^3 -6x) *(x^2 -1)^2 -(x^4 -3x^2) *2(x^2 -1) *2x}{ (x^2 -1)^4}
=\frac{ 2x *(x^2 -1) *[(2x^2 -3) *(x^2 -1) -2(x^4 -3x^2)]}{ (x^2 -1)^4}
=\frac{ 2x *[(2x^2 -3) *(x^2 -1) -2(x^4 -3x^2)]}{ (x^2 -1)^3}
=\frac{ 2x *[2x^4 -3x^2 -2x^2 +3 -2x^4 +6x^2]}{ (x^2 -1)^3}
=\frac{ 2x *[x^2 +3]}{ (x^2 -1)^3}

2x =0 \Rightarrow x =0
x^2 +3\neq0

x \in (-\infty, -1): -, A
x \in (-1, 0): +, V
x \in (0, 1): -, A
x \in (1, \infty): +, V

The inflection point is [0, 0].

6. Asymptotes

Oblique asymptote y =kx +q:

k =\lim_{ x \rightarrow \pm\infty}\frac{ f(x)}{ x}
=\lim_{ x \rightarrow \pm\infty}\frac{ x^3}{ x^2 -1} :x
=\lim_{ x \rightarrow \pm\infty}\frac{ x^3}{ x *(x^2 -1)}
=\lim_{ x \rightarrow \pm\infty}\frac{ x^2}{ x^2 -1}
=1

q =\lim_{ x \rightarrow \pm\infty}(f(x) -kx)
=\lim_{ x \rightarrow \pm\infty}(\frac{ x^3}{ x^2 -1} -x)
=\lim_{ x \rightarrow \pm\infty}(\frac{ x^3 -x(x^2 -1)}{ x^2 -1})
=\lim_{ x \rightarrow \pm\infty}\frac{ x}{ x^2 -1}
=0

So the oblique asymptote is y =x.

Vertical asymptotes:

  • \lim_{ x \rightarrow -1^-}\frac{ x^3}{ x^2 -1}=\lim_{ x \rightarrow -1^-}\frac{ x^3}{ x +1} *\frac{ 1}{ x -1} =-\infty
  • \lim_{ x \rightarrow -1^+}\frac{ x^3}{ x^2 -1}=\lim_{ x \rightarrow -1^+}\frac{ x^3}{ x +1} *\frac{ 1}{ x -1} =\infty
  • \lim_{ x \rightarrow 1^-}\frac{ x^3}{ x^2 -1}=\lim_{ x \rightarrow 1^-}\frac{ x^3}{ x +1} *\frac{ 1}{ x -1} =-\infty
  • \lim_{ x \rightarrow 1^+}\frac{ x^3}{ x^2 -1}=\lim_{ x \rightarrow 1^+}\frac{ x^3}{ x +1} *\frac{ 1}{ x -1} =\infty

There are two vertical asymptotes: x =-1 and x =1.

7. Final description of the graph

The function is defined for   x \in (-\infty, -1) \cup (-1, 1) \cup (1, \infty). The graph is limited by the vertical asymptotes   x =-1 and   x =1 and the oblique asymptote   y =x. There are two local extrema, local maximum:   [-\sqrt{ 3}, \frac{ -3\sqrt{ 3}}{ 2}] and local minimum:   [\sqrt{ 3}, \frac{ 3\sqrt{ 3}}{ 2}].

The graph of the function is for   x \in (-\infty, -1) below the axis   x, there is the local maximum   [-\sqrt{ 3}, \frac{ -3\sqrt{ 3}}{ 2}], the curve concaves downward, and its position is on the left side of the asymptote   x =-1. Because the point   [-\sqrt{ 3}, -\sqrt{ 3}] lying on the asymptote   y =x is above the local maximum   [-\sqrt{ 3}, \frac{ -3\sqrt{ 3}}{ 2}], the whole part of the graph is for   x \in (-\infty, -1) bellow the asymptote   y =x.

The graph of the function on the interval   (-1, 1) intersects with the axis   x at the point   [0, 0] – the inflection point, where the function changes its shape, for   x \in (-1, 0) concaves upward, for   x \in (0, 1) concaves downward, the function is odd. The part of the graph for   x \in (-1, 1) is located between the vertical asymptotes   x =-1 and   x =1, the oblique asymptote   y =x intersects the graph of the function at the point   [0, 0].

The graph of the function is for   x \in (1, \infty) above the axis   x, there is the local minimum   [\sqrt{ 3}, \frac{ 3\sqrt{ 3}}{ 2}], the curve concaves upward, and its position is on the right side of the asymptote   x =1. Because the point   [\sqrt{ 3}, \sqrt{ 3}] lying on the asymptote   y =x is below the local minimum   [\sqrt{ 3}, \frac{ 3\sqrt{ 3}}{ 2}], the whole part of the graph is for   x \in (1, \infty) above the asymptote   y =x.

4. Sketching the graph of the function and its adaptation